

Designed to test solar neutrino oscillation parameters on Earth (!)

KamLAND has a much longer baseline than previous (reactor) experiments ...still quite a difficult experiment

Oct 11, 2002 KamLAND Status 2

Only a few places in the World could host an experiment like KamLAND...

Oct 11, 2002 KamLAND Status 4

Site	Distance	# of	P(ther.)	flux	Signal
Japan	(km)	cores	(GW)	$(\bar{v} \text{ cm}^{-2} \text{s}^{-1})$	(√/yr)
Kashiwazaki	160.0	7	24.6	4.25x10 ⁵	348.1
Ohi	179.5	4	13.7	1.88X10 ⁵	154.0
Takahama	190.6	4	10.2	1.24x10 ⁵	101.8
Hamaoka	214.0	4	10.6	1.03x10 ⁵	84.1
Tsuruga	138.6	2	4.5	1.03x10 ⁵	84.7
Shiga	80.6	1	1.6	1.08x10 ⁵	88.8
Mihama	145.4	3	4.9	1.03x10 ⁵	84.5
Fukushima-1	344.0	6	14.2	5.3x10 ⁴	43.5
Fukushima-2	344.0	4	13.2	4.9x10 ⁴	40.3
Tokai-II	294.6	1	3.3	1.7x10 ⁴	13.7
Shimane	414.0	2	3.8	9.9×10^3	8.1
Onagawa	430.2	2	4.8	9.8x10 ³	8.1
Ikata	561.2	3	6.0	8.4x10 ³	6.9
Genkai	755.4	4	6.7	5.3x10 ³	4.3
Sendai	824.1	2	3.3	3.5x10 ³	2.8
Tomari	783.5	2	5.3	2.4x10 ³	2.0
Korea					
Ulchin	~750	4	11.2	8.8x10 ³	7.2
Wolsong	~690	4	8.1	7.5x10 ³	5.2
Yonggwang	~940	6	16.8	8.4x10 ³	6.9
Kori	~700	4	8.9	8.0x10 ³	6.6
Total		69	175.7	1.34x10 ⁶	1102

Total expected signal from reactors: ≈2 ev/day

S/N ratio ≈ 20 @ 10⁻¹⁴ U, Th, ⁴⁰K contamination in the scintillator

The total electric power produced "as a by-product" of the _s is:

•~60 GW or...

~~4% of the world's manmade power or...

·~20% of the world's nuclear power

Oct 11, 2002 KamLAND Status 7

Other initial physics topics include:

- ·Geological neutrinos
- ·Supernovae detection
- ·Solar anti-neutrinos
- ·Exotic nucleon decay modes

KamLAND: neutrino physics on a shinkansen

·Summer 2000

PMT installation

·Winter 2000-01

Veto counter installation

·Feb 2001

Balloon insertion

·Mar-Apr 2001

Balloon inflation and test

·Apr-May 2001

Plumbing for fill

·Jun-Sept 2001

Fill MO and LS

·Aug-Sept 2001

Eng. runs with Macro Elec.

·Sept 2001

FEE/DAQ/Trigger int. (LBL)

end Sept 2001
Oct 11, 2002

First data taking with FEE
KamLAND Status
9

Jan 22, 2002

Begin Data Taking

First muon events, Jan 2002

Time: Red soon, Blue late

Charge: Red alot,
Blue little

Have full waveform digitizers on every central and veto channel

Very important for exploring new physics and reject complex background signatures

Signals from blue LED flashers in the detector

through_going muon

color is pulseheight

all tubes illuminated

Stopped muon

decaying alectron

Corner-clipper muon:

Cherenkov
ring in the
buffer but
no scintillation
activity

Muon track reconstruction reveals the balloon boundary and the different light yield in scintillator and buffer oil (cherenkov)

Zn65 At Center Of Detector

⁶⁵Zn:
1.115 MeV in the detector

_/E = 6.5 %

Light Yield 241 p.e./MeV

Co60 At Center Of Detector

60Co: 1.173+1.333 MeV in the detector

_/E = 4.2%

Light Yield 239 p.e./MeV

Position Calibration

Now find cosmic ray muons traversing the detector and look for energy deposits following them

Using E cal.
from previous
slide the peak
is here at
≈ 2.3 MeV

n-capture in hydrogen gives 2.2 MeV

Prompt - delayed correlation time distributed as an exponential with 210±8 _s

Expectation for neutron capture is ~223 _s

Neutrons Following Muons (300 < nsum < 600)

Anti-Neutrino Candidate

Prompt Signal E = 3.20 MeV

Delayed Signal E = 2.22 MeV

KamLAND anti-neutrino live-time since the beginning of physics runs

Singles Background

Scintillator contamination by mass

Measured from data:

```
•Th: using the <sup>212</sup>Bi-<sup>212</sup>Po 300 ns correlation

_ <1.8*10<sup>-16</sup> g/g
•U: studying the high energy background

_ <6.4*10<sup>-16</sup> g/g
•40K: fitting background spectra

_ <2.3*10<sup>-16</sup> g/g
```

Consistent with Neutron Activation Analysis:

```
• Th < 2.8*10^{-15} g/g
• 6/11,4208*10<sup>-15</sup> g/g
• KamLAND Status
• 40K < 1.3*10^{-15} g/g (record NAA sensitivity)
```

<u> Signal – Background</u>

Flux*CrossSection*LiveTime*Volume*ProtonDensity*CutAcceptance

We are in the final stages of evaluating our numbers for all of these quantities and their systematic errors.

20" PMT test, Mar '02

Energy
resolution
(and data
load !!)
will improve
by ~\sqrt{2}

Oct 11, 2002

Data is coming in smoothly...

stay tuned for many years of exciting results...